
NASA-CR-203162 ...b'JJ_:_ - ,-_ f_G/

"7 iJ "-_9 <? ""

Clustered Workstations and their Potential

Role as High Speed Compute Processors
Report RNS-94-003 April 1994

A report of the NAS Distributed Computing Team
(in alphabetical order)

, Doreen Chengt, Rod Fatoohit, Edward Hookt, Bill Kramer§, Crai

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

ARC 275 (Rev Mar 93)





Clustered Workstations and their Potential

Role as High Speed Compute Processors
Report RNS-94-003 April 1994

A report of the NAS Distributed Computing Team
(in alphabetical order)

Karen Castagnera§, Doreen Chengt, Rod Fatoohit, Edward Hookt, Bill Kramer§, Craig

Manningt, John Musch§, Charles Niggleyt, William Saphirt, Douglas Sheppard #, Merritt
Smithl, Ian Stockdalet, Shaun Welch #, Rita Williams§, David Yip§

Team Leader
William T.C. Kramer

Chief, NAS Computational Services Branch

NAS Systems Division
NASA Ames Research Center

Moffett Field, CA 94035

(415) 604-4600
kramer@nas.nasa.gov

Members of the NAS Distributed Computing Team

Karen Castagnera§ Doreen Chengt

Karen Gundy-Burlet¶ Edward Hookt

Craig Manningt John Musch§

Douglas Sheppard # Grant Smith*
Shaun Welch # Rim Williams§

David Dinuccit

Louise Kokinakis #

Charles Niggleyt
Merritt Smith¶

David Yip§

Rod Fatoohit

Bill Kramer§

William Saphirt
Ian Stockdalet

Abstract
This is a report of the work of the NAS Distributed Computing Team, and some
conclusions about the viability and role of workstation cluster computing for solving

areoscience problems. The report discusses the year-long activity at NAS to implement a
large, loose cluster of workstations from the existing SGI pool of systems. The team's
goals and approach are discussed, followed by reported results for both the NAS Parallel

Benchmarks and other, computationally intensive work using the environment.

§ NAS Systems Division, NASA Ames Research Center, Moffett Field, CA 94035
t Computer Sciences Corporation, NASA Contract NAS 2-12961, Moffett Field, CA 94035-1000
# Sterling Federal Systems, NASA Contract NAS 2-13619, Moffett Field, CA, 94035-1000
¶ Fluid Dynamics Division, NASA Ames Research Center, Moffett Field, CA 94035
* Thermal Sciences Institute NASA Contract NAS 2-14031, Eloret, Moffett Field, CA, 94035-1000



Table Of Contents

.0.* .......

1.1 .........
1.2 .........

1.3 .........
1.3 .........
2.0 .........
2.1 .........
2.2 .........
3.0 .........
3.1 .........
3.2 .........
3.3 .........
4.0 .........
4.1 .........
4.2 .........
4.2.1 ......

Introduction

The Distributed Computing Team
Objective
Approach
Overview of the Work
PVM - The Parallel Virtual Machine
How PVM Works

Advantages and Disadvantages of PVM
Batch Systems
DQS
Condor

The DCF Configuration
DCF from the Application Developer Viewpoint
OVERFLOW-PVM
NAS Parallel Benchmarks

Cost Comparisons
4.2.2 ...... DCF Network Usage for the NPB
4.3 ......... Porting Cray Codes to Workstations
4.4 ......... Summary of Other Users
4.4.1 ...... DQS/PVM Users
4.4.2 ...... Condor Users

5.0 ......... DCF Usage Analysis
5.1 ......... Measuring System Usage
6.0 ......... Summation of the DCF Experience
7.0 ......... The Role of Cluster Computing in Industry
8.0 ......... Expectations for Future Clustered Systems
8.1 ......... Processor Speed
8.2 ......... System Software
8.3 ......... Application Software
8.4 ......... Distributed Parallel I/O
8.5 ......... Networks

8.6 ......... Physical Connection/Protocol
8.7 ......... Network Protocols

8.8 ......... Message-Passing Libraries
9.0 ......... Summary

1
1
2
3
4
4
5
5
5
7
9

10
11
11
14
22
24
25
28
28
29
30
30
31
32
32
32

33
34
34
34
34
35
35
35

ii



1.0 Introduction

The Numerical Aerodynamic Simulation (NAS) Systems division at NASA Ames is
designed as one of the most advanced supercomputing environments for a national client
base of scientists working primarily in the field of computational fluid dynamics and
related disciplines. The goals of the NAS program are:

"1) to provide a national computational capability available to NASA, the
Department of Defense (DOD) and other government agencies, industry, and uni-
versities, as a necessary element in ensuring continuing leadership in computational fluid
dynamics and related disciplines;

2) to act as a pathfinder in advanced, large-scale, computer systems capability
through systematic incorporation of state-of-the-art improvements in computer hardware
and software technologies; and

3) to provide a strong research tool for NASA's Office of Aeronautics and Space

Technology." 1

The NAS Processing System Network (NPSN) began operation in September 1985, with
the arrival of the fh'st Cray Research, Incorporated (CRI), Cray-2. In October of 1988,
NAS received the first customer shipped CRI YMP system. It supports a national base of
scientists.

NAS currently supports two CRI C90 systems, one with 16 processors, another with 8,
three Convex 3820s for mass storage, a Thinking Machines Corp. (TMC) CM-5 with 128
processors, an Intel iPSC/860 with 128 processors, an Intel Paragon with 208 processors,
a Convex 3420 for visualization support, various file and support servers, more than 250
Silicon Graphics Inc. (SGI) workstations and about 85 Sun workstations. The current
networking technology is subnetted Ethemets, FDDI and ULTRAnet, connected by
Wellfleet routers. NAS also as implemented Aeronet, a nation wide network connecting

major research and industry sites that are involved in aerosciences. This network consists
of a T-3 backbone and a number of leaf connections using T-1 and T-2 rates.

An early design requirement of the NAS system was to have a single, consistent user
interface, regardless of the underlying hardware Therefore, all the operating systems are
UNIX based. All these varieties of UNIX are based on AT&T System V 2 with the

addition of TCP/IP networking 3 and Berkeley UNIX extensions such as sockets 4.

1.1 The Distributed Computing Team

At the 1993 NAS User Interface Group (UIG) meeting, several aerospace firms asked

NAS to explore the possibilities of doing compute intensive tasks on distributed
workstation systems. NAS had already anticipated the need to investigate this type of
computing and announced the formation of the NAS Distributed Computing Team (DCT)

at the meeting.

1 Bailey, F. Ron: Status andProjections of the NAS Program. Proceedings of a Workshop on

Supercomputing Environments, NASA Ames Research Center, Moffett Field, CA, June 24-26, 1986.

2 Kevorkian, D.E., ed.: System Vlnterface Definition. Indianapolis, IN, 1985.

3 Feinler, EJ., et.al., eds.: DDN Protocol Handbook. Vol 1, Defense Technical Information Center,

Alexandria, VA, 1985.

4 Laffler, S.J.: A 4.2 BSD Interprocess Communication Primer. Department of Electrical Engineering and

Computer Science, University of California, Berkeley, C A , 1983.
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There are several reasons for forming the DCT: interest in tightly coupled workstation
clusters as replacements for large systems has grown, and these clusters are claimed to be
a viable alternative to supercomputers. As the realities of making MPPs work become
more evident, many in the industry are turning to the potential of distributed computing.
The three major drivers of this trend are:

• The rate of increase in workstation CPU performance is outstripping that of MPPs

and traditional supercomputers.
• Large memory workstations are available at reasonable prices.
• Many corporations have a large installed base of workstations that could be used

for distributed computing.

Economic realities require companies to increase the effective use of their existing
workstations. One alternative is a loosely clustered configuration. 5 For example, most
workstations are used less than 25 percent of the time. Workstations have become

ubiquitous and are found in almost every computing environment.

1.2 Objective

The approach NAS used was influenced by the fact that several other groups (such as
NASA Lewis, Argonne Laboratory, Lawrence Livermore) were working with tightly
coupled workstation clusters. While NAS has experience with Silicon Graphics system in
a tightly clustered configuration such as the four 4D/380 systems connected with Ultranet
and FDDI and used as general support processing systems, NAS decided to investigate
loosely coupled systems because:

• NAS has a strength in effectively managing large groups of workstations.
• NAS uses automation in its workstation environment, therefore avoiding many of

the tedious activities involved in maintaining a consistent environment across a
large number of machines.

• There is a large need for work in this area and no major project existed to
investigate it for aeroscience computations.

A cross organizational Distributed Computing Team was put together with the following
mission.

Establish a prototype computing environment across large groups of
workstations that allows efficient computing for batch and batch�parallel

jobs while not co.opting those systems from their primary role.

This environment is called the NAS Distributed Computing Facility (DCF). While the
team consisted of approximately 15 staff members from the three NAS branches, the total
effort was between two and three full time equivalents (FTE) for nine months to
accomplish this work. There was no additional funding was spent on this work.

5"Tightly clustered" workstations refer to systems attached to dedicated, high-speed networks and switches,
while "loosely coupled" clusters refer to workstations connected with non-dedicated networks.
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1.3 Approach

The specific approach was to establish a prototype loosely coupled cluster of
workstations with one or both of the two major NAS workstation architectures (SGI 4D
and Sun SPARC 4). Then, identify and resolve the major system management issues in
providing reasonable cycle recovery from these systems without disrupting the primary
function. Performance evaluation tests were run based on the NAS Parallel Benchmarks

(NPB) and other codes, including OVERFLOW-PVM, a full-fledged Computational Fluid
Dynamics (CFD) application code. This report summarizes the activities related to the

prototype cluster and identifies areas that need improvement, development, and research
in order to make such a system a reliable, competitive computing environment.

As the goal was to quickly establish the prototype to gain experience, existing technology
was used instead of developing new technology. The overall approach of this work is
represented in Figure 1.

Architecture 4-MPP Single Single

Architecture 3-HSP Single single

Architecture Z-Sun Single Single

Architecture 1-SGI Single Single
Program/ Program/
Single Single
C PU Sy stem

Single

Single Multiple

Single Multiple Mutiple

Single Multiple Mutiple

Program/ Programs/ Programs/
Multiple Single Single

Systems CPU System

Serial
Interactive Exists Exists Exists Exists Exists

I

Serial Batch Exists Exists N/A Exists Exists

Parallel
Interactive N/A N/A Exists Exists

Parallel Batch N/A N/A DQS/PVM Exists Exists

Figure 1. The Sequence of Implementation

Mutiple Mutiple

Mutlple Mutlple

Mutiple

Mutiple
Pro g re ms/I
Multiple

Sys tems I

N/A "l

Specific steps included:

1) Setting up a PVM environment
2) Setting up a PVM environment with a reservation system
3) Setting up a batch environment to support PVM and integrating the batch and

PVM environments

4) Implementing a batch system for serial programs
5) Integrating all the environments together

Finally, the environment was expanded by increasing the number and types of systems
and increasing the number of users (including remote users.) All these steps are described

in more detail in subsequent sections.
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1.3 Overview of the Work

The initial steps of the work emphasized organizing an environment with 50 SGI and 40
Sun workstations. The Parallel Virtual Machine 6 (PVM) software was selected as the best

existing tool for message-passing and parallel program control because it was being used
in a number of cluster environments, and was important because PVM versions 3.0 and
later versions run on other platforms including Massively Parallel Processors (MPPs) as

well as distributed workstations. Part way through the prototype evaluation (Spring
1993) the team evaluated the batch queuing systems that were available for this
environment and identified the strengths and issues as described in the following sections.

The prototype has been used by a small, but growing group of users. The NAS Parallel
Benchmarks have been run on the NAS cluster as well as several others. A CFD

application code, OVERFLOW-PVM, has run in the environment since the beginning of
the project. Several network experiments were conducted to judge the effectiveness of
loosely clustered workstations networked via Ethemet. These and several other user
experiences are discussed below.

As a specific recommendation, UIG representatives suggested that NAS sponsor a
conference in this area. On October 18-20, 1993, NAS sponsored a workshop on
"Distributed Computing for Aeroscience Applications." It was attended by 180 people,
including 23 representatives from Aerospace companies and 44 from other government
groups. The evaluation of this meeting indicated that the attendees thought the meeting
was excellent. A separate report has been produced. 7

2.0 PVM - The Parallel Virtual Machine

The Parallel Virtual Machine (PVM) is a message-passing library designed to allow a
person to create a code that can run across a set of distinct and otherwise unrelated _

systems, whether homogeneous or heterogeneous. Given present-day operating systems,
such a program is actually a set of independent processes, running on the various
machines, that cooperate with one another.

Restricting attention to single UNIX systems, there are really only a few ways to manage
cooperating processes on the same machine, all of which are fairly well understood. In
cases where these systems contain multiple CPUs, vendor-provided software typically
coordinates processes in a proprietary manner. The task is more complicatedwhen
implemented on networked UNIX systems. The cooperating processes on different
machines need to communicate with one another. Programmers doing this by hand
traditionally had to master TCP/IP sockets or some equivalent method and spend a good
deal of effort providing communication and synchronization capabilities in their
programs. Computational scientists have begun to overcome these obstacles and various
tools are available to ease the difficulty of creating a multi-machine job. To date, the most
popular of these tools is PVM, which was developed jointly by Oak Ridge National
Laboratory, the University of Tennessee at Knoxville and Emory University, and is freely
available from netlib@ornl.gov.

6A1 Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek

Vaidy Sunedram, PVM 3 User's Guide and Reference Manual, Oak Ridge National Laboratory, May 1993

7Report of the NAS Workshop on Distributed Computing for Aeroscience Applications, October 18-20, 1993,
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2.1 How PVM Works

PVM presents a fairly simple picture to the user. In order to construct a "virtual machine"
out of a collection of computers, the programmer invokes the PVM daemon on one

computer (designated the home machine) and provides it a list of the component systems
to be connected together. The daemon supervises all the communication details, such as
starting up slave daemons on each of the hosts and establishing a socket-based
communications network link. By calling routines provided in the PVM libraries, a user's
program can spawn tasks on various hosts and these tasks can communicate among
themselves by sending and receiving messages using straightforward mechanisms. From
the programmer's perspective, a parallel virtual machine is very much like programming
using a message-passing paradigm on any MPP although network of workstations joined
by Ethernet and an MPP incorporating a custom high-speed back plane have very
different hardware bandwidths.

2.2 Advantages and Disadvantages of PVM

The DCT chose PVM as its parallel paradigm because PVM's wide availability and
usefulness have made it a defacto standard for cluster computing. Codes developed using

the PVM libraries are "portable" to many other environments as long as the basic
algorithm is applicable. Coming from the other direction, it is fairly easy to translate
codes developed for message-passing MPPs to use PVM calls instead, so a programmer
can take advantage of existing parallel methods and algorithms. Creating a cluster
environment such as DCF is made easier by the existence of tools such as PVM, which
has also been integrated with some utilities and job control packages.

The disadvantages of using PVM should be noted while pointing out that it is the best
available software at the moment. First, PVM jobs are subject to the traffic on a general
purpose network and thus can experience substantial delays. In addition, PVM's message-
passing implementation incorporates several layers of software overhead in addition to
the network software protocol layers. While this overhead may not be a bottleneck on an
Ethernet-based network, it might become one as higher speed networks are used. PVM
developers are addressing these issues. Releases of PVM beyond version 3.0 reduce some
of this overhead, although absolute performance is still below that of PVM 2.4. For
instance, release 3.2 allows direct TCP connections between tasks, instead of routing

messages through a daemon. Future releases may allow in-place data packing, which
reduces the amount of buffering required. Overhead remains a concern since PVM has to

deal with a generalized environment, while comparable MPP-based message-passing
libraries can assume many efficiency improving safeguards. On a slow network, such as
Ethernet, the overhead introduced by PVM has a minor effect.

Other limitations include a lack of global operations and no parallel library support. The

process of building the virtual machine is not as robust as it might be. For example,
sometimes the daemon does not recover or report errors if one of the hosts happens to be

unavailable. This was particularly true of PVM release 2.4 and has improved with
releases after 3.0.

3.0 Batch Systems

Effective use of a network of computers requires intelligent management of
heterogeneous resources. Running multiprocessor jobs requires a tool to work with an
execution environment such as PVM, and scheduling all the processes of a single job

together. It must satisfy the resource requirements of multiprocessor jobs while balancing
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the workload. The batch control system for DCF project had to have the ability to
dynamically allocate hosts, provide a mechanism for queuing jobs on a loosely coupled
cluster of workstations and support PVM.

A major goal of the project was to investigate the recovery of compute cycles that are
available on workstations, which are for the most part, dedicated to individual workers.

Any software system selected had to be as unobtrusive as possible to the primary user of
the workstation. It should allow tasks to run when the system is idle, but stop the task

from using resources when it is determined the primary user is present and using the
resources. Ideally, it would also allow for the migration of programs from a busy system
to an idle system. It should provide fault tolerance to the distributed user with functions
like checkpoint-restart, and provide process migration when the workstation's primary
users need resources. In addition, the tool must provide user control for resource selection

and monitoring.

At first, a workstation reservation system was implemented through a set of shell scripts.
This provided a good service but was only viable for a small group of users since a
workstation was reserved for a full night. It served until a true batch system was selected.
At the same time, creation of a submission script for PVM made up for some
shortcomings in PVM that were disruptive to users.

Based on the general requirements mentioned above, the DCT compiled a list of 30
useful functions and used them to compare existing resource management tools: Network

Queuing System (NQS), Distributed Job Management System (DJM), Portable Batch
System 8 (PBS), LSF 9 (formerly called Utopia), Distributed Queuing System (DQS), and
Condor. The major differences are summarized in Table 1. The DCT also asked our users
to rate the importance of these features. No single tool provided all the desired features.
DJM only supported Thinking Machines Corp. platforms. Condor did not support
multiprocess jobs. DQS and Utopia did not provide checkpointing. NQS did not support
PVM, did not checkpoint on workstations and did not take into account interactive work.
PBS was not yet implemented. Complete descriptions of these comparison, along with
other parallel tools is contained in "A Survey of Parallel Programming Languages and
Tools", NAS Technical Report RND-93-005, March 1993.1°

8David Tweten, et al, Portable Batch System External Reference Specification, PBS Document, March 1993.

9Zhou, S. LSF: Load sharing in large-scale heterogeneous distributed system, In Proceedings of the Workshop on

CLuster Computing, Tallahassee, FL., Dec. 1992.

10Doreen Y. Cheng, A Survey of Parallel Programming Languages and Tools, NAS Technical Report RND-93-005,

March 1993.
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Batch System
NQS - Network Queuing
System

DJM - Distributed Job

Management System

PBS - Portable Batch

System
LSF

DQS - Distributed Queuing

S),stem
Condor

Strengths
Available on Crays,
workstations, and other

systems at NAS

Available on CM-5, CM-2

Specifications were good

Supports PVM and serial
jobs
Integrates with PVM

Good job management
Integrates with interactive
work

Checkpoints on
workstations

Issues

Not integrated with PVM
Not integrated with
interactive work

Did not checkpoint on
workstations

Not ported to other systems
Not integrated with PVM or
interactive work

Did not checkpoint
Not yet implemented

Did not checkpoint

Did not checkpoint

Did not support PVM
Did not support shell scripts

Table 1. Sumrnary Comparison of Cluster Batch Software

Easy access to source code became an important factor in selecting a tool since this was
an evolving prototype. Both Condor and DQS are in the public domain and are used in
many organizations. The DCT felt it was important to understand the workings of at least
two systems so both DQS and Condor were selected. DQS is used for scheduling
multiprocess jobs in the evening and weekends, and Condor used for cycle-stealing by

single-process jobs all the time.

3.1 DQS

DQS 11 is an experimental UNIX-based queuing system that is being developed jointly by

Supercomputer Computations Research Institute at the Florida State University,
Pittsburgh Supercomputing Center, and Center for High Performance Computing in the
University of Texas System

There are two main components to DQS: A qmaster daemon and a dqs_execd daemon.
The qmaster daemon runs on a master machine to monitor the machines in the DQS pool.
It is responsible for knowing if a machine in the DQS pool is available and can accept
jobs, the status of the queues, which jobs are currently running in the queue if any, and
the load average of the machines in the DQS pool. The qmaster does not run jobs; it is
only an agent that handles the request for hosts. The dqs_execd runs on each machine in
the DQS pool. It starts up at boot time and registers with the qmaster daemon. Dqs_execd
communicates with the qmastervia a known TCP port, and is responsible for executing

the jobs on its DQS host. DQS is capable of supporting multiple queues.

There are also various ancillary programs, which provide the user with an interface to
DQS. These programs provide the tools needed to manage the queues, monitor, submit
and remove jobs, and suspend and/or enable the various queues.

11Loui s S. Revor, DQS Users Guide, DQS Documents, Sept. 1992 and Green and Snyder, DQS, A Distributed Queuing

System, March 1993
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Typically, a user submits a job via qsub. (e.g. qsub dqs job).Dqsjob is a script file that
sets the various options and defines which program to run. The job submitter selects the
master controlling queue (usually his/her own machine ) and the numbers and types of
other queues needed.

In the DCF parallel environment, a queue corresponds to an individual processor and a
user submits a parallel job to a set of queues. Another minor implementation detail was to
change the name of the DQS commands. Since this was a prototype environment, in
order not to confuse users or conflict with the existing COSMIC NQS 2.0 commands,
each DQS command was preceded with a "d" (e.g. qconf became dqconf).

Remembering that the primary role of DQS at NAS is to reserve hosts for PVM and not
all machines are in the DQS machine pool, the DCF implementation had to allow a user
to include machines outside of the DQS pool even if there were no existing PVM

accounts for them. Therefore, DCT added a -phfilename option to the qsub command.
This option allows a user to specify a file that contains a list of hosts to be included when

starting up the PVM daemon.

A NAS-specific problem was encountered with the DQS configuration. The qmaster was
installed on a fileserver that does not have any user accounts. When a user submits a job,
DQS checks to see if the user was authorized by checking for an account on the qmaster
host. The check would fail and the user would not be allowed to submit the job. This
checking was disabled based on the assumption (possibly invalid in the general case) that
if the host is trusted, then the user submitting the job is trusted.

Another NAS-specific problem with DQS/PVM is that each machine has its own
/etc/passwd file. Because NAS has a centralized account management system 12instead of

a global password file or Yellow Pages (YP), accounts had to be set up on each
workstation for the PVM users. In order not to impact the "primary users" of the
workstations, the accounts are only accessible between 10pm and 5am. For the same
reason, the user's home directory is NFS-mounted from the primary local workstation, or
for remote users from a shared workstation. Thus, PVM jobs only consume CPU and
memory resources, and have no impact either temporary or permanently on the disk space
of the workstation. To implement this, a cron job is run at 10pm on each machine in the
DQS pool to check the DQS queues, and any user who has a job queued has their account
enabled. Similarly, a cron job turns the account off at 5am. A current problem with this
solution is that a user cannot submit a job after 10pm and have their account enabled,
which in tum means their job will fail. A solution, which is currently being worked on, is
to have the qmaster or dqs_execd daemon enable and disable the accounts.

DQS is simple to install and configure. It is easy to add, delete, and modify queues. Most
of the adding, deleting and modifying of the queues has been automated. Since the queue
names were based on the hostname, administrative problems were encountered when, for
example, a hostname changes, making the DQS queue name invalid. Startup scripts for
dqs_execd to handle this problem.

DCF currently runs version 2.1 of DQS. Two bugs, but neither critical, need to be
resolved. There appears to be an inconsistency when a user requests 32 hosts. The last
host in the list gets truncated. There is also a problem when a user submits a job and
requests specific queues, dqstat reports the last host requested by the user as the
controlling queue, when in fact it is usually not the case.

12NAS Login Account Mangement Manual, NAS Computational Services Branch, 1989.
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One of the issues with the DQS/PVM setup for DCF is that DQS only verifies that a host
is available and can accept DQS jobs. It does not check to determine if the user account is
accessible or that PVM started up correctly. If DQS monitored the daemon's output for
errors, this and other problems would largely disappear. In the end, DQS does a good job
of allowing dynamic allocation of hosts for PVM use.

3.2 Condor

Condor is a batch queue system designed to run jobs remotely on a collection of
machines. One machine is the master, which monitors and executes jobs on the rest of the
cluster. It currently only directly supports the execution of serial jobs. Condor was written
at the University of Wisconsin. 13

Condor runs on a variety of platforms. The version used in the DCF initially was an
offshoot of the official version. The prototype cluster that was established for the DCF
was originally composed only of SGI systems. A special version of Condor exists for this
platform.

There were several problems bringing it up this version of Condor. Checkpointing did not
work on SGIs. Specifically, a job would start off correctly. Condor would checkpoint it
after a period of time to save its status in case of a system failure. Thereafter the job
would only accumulate system time and no user time and eventually it would abort and
start over again. The temporary solution was to turn off checkpointing. Currently a job
suspends, but never checkpoints or migrates. Condor was set up so that it would never try
to migrate a job since this would abort it. A job now runs on a particular system until it
completes, no matter how long or often it is suspended. Work is going on to properly
correct the bug.

The Condor build for the Sun Platform was straightforward, as this release was well

maintained by the authors. Only the typical modifications had to be made to the imakefile
and makefile for the compiler options and the location of the binaries. It was built on a
SPARCstation 2 and moved to fileservers for distribution to the user systems.

An SGI system was identified as the master for the Condor cluster;, both the SGI and Sun
architectures use this same master. Accounting is accumulated for both architectures on
the individual machines. Unlike DQS, which maintains a central log, Condor keeps a log

on every system. Due to different binary formats between the SGI and Sun versions the
accounting procedures must be executed once for each architecture.

The DCF experience with Condor has been mixed. After the initial problems with
checkpointing were solved, the first test user reported that the system was working well.
Currently, there appears to be intermittent problems with some jobs not completing, and
others aborting unexpectedly. Many jobs normally take a few days to run. The fact that
some jobs abort needs to be investigated. This is particularly significant since job
migration has not been implemented. Another issue is that primary users are running out

of memory when they use their machines while a Condor job is suspended. Whether we
have to increase the size of swap or find some other solution, this issue needs to be
addressed before the DCF environment can be expanded.

Staff members are working with the authors of Condor on the issue of checkpointing on
SGIs. Once this is resolved, most of the current difficulties should be resolved.

13AUan Bricker, Michael Litzkow and Miron Livny, Condor Technical Summary, Condor Documents, Sept. 1991.
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3.3 The DCF Configuration

The DCF Condor cluster consists of 31 machines, 9 SGIs and 22 Suns. There arc 49 SGIs

in the DQS environment. Tables 2 and 3 summarizes DCF system types and capabilities.

System Number of
Systems

Processor Average Memory
Size

{megabytes)

Average Swap
Space

(megabytes)

4D/RPC 14 R3000 48 50

4D/25 11 R3000 16 40
4D/30 2 R3000 20 42

4D/35TG 4 R3000 32 50

4D/320 5 R3000 48 40
4D/380 5 R3000 256 7 50

4D/4"* 2 R3000 256 195

4D/RPC 4 R4000 64 50
48Indigo2

(4DTWO50EX)

2 R4000 130

4D/CR 2 R4000 96 128

Sparcl 13 SPARC 28 12

Sparcl+ 2 SPARC 24 16

Spare2 9 SPARC 32 31

Table 2. NAS Distributed Computing Facility Systems

MIPS

MHz VAX

Drystone

SGI Configurations :

4D25G

4D25TG

4D30TG

20

20

30

16

16

27

SPEC89 fp92

14

14

int92

27

4D35TG 36 33 31

4D320VGX 2x33 59 47

4D380S 8x33 234 128

4D380VGX 8x33 234 128

4D420 2x40 72 56

4D440IG2 4x40 143 106

4DCRVGX 50 85 70 61.5 58.3

4DRPC 33 30 26 24.2 22.4

4DRPC50 50 85 70 60.5 58.3

4DRPC50EG

4DRPCEG

50

33

50

85

3O

85

16

29

MFLOPS

(DP Liapack)

1000 100 by

by 1oo
I000

4.7

6

2O

6O

6O

23

42

16

4.2

16

16

4.2

16

4

4DTWO50EX

(Indi@o2)

Sun Configurations:

Sun 4/60

Sun 4/65

70

26

12

25

60.5

24.2

60.6

Sun 4/75

58.3

22.4

58.6

Table 3. NAS Distributed Computing Facility System Descriptions
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These systems add up to between 10 and 15 percent of the processing capability and
almost twice the memory of CRI Y-MP/8256 that was in place at NAS until October
1993.

4.0 DCF from the Application Developer Viewpoint

This section discusses the experiences of several users the DCF and other cluster systems.
The 4.1 discusses a large CFD application that was one of the earliest uses of the DCF.
The results in 4.2 include NAS Parallel Benchmarks (NPB) work funded by NAS that
was done on other cluster environments in addition to work done on the NAS DCF. 4.3

explores the issues with porting vectorized codes that run very successfully in the Cray
environment to workstations. The 4.4 is a summary of impressions and experiences from
some of the later users of the DCF.

4.1 OVERFLOW-PVM

As a test application, one of us ported the multimethod overset grid flow solver
OVERFLOW 14to the DCF, calling it first MEDUSA and then OVERFLOW-PVM 15.The

parallel code uses a manager-worker control paradigm with parallelism extracted at the
grid level. Every grid is operated upon by a.separate process, each of which
communicates with the manager process at the completion of each solution step. PVM
communications are used throughout. These processes are distributed among the
processors of the DCF by a static load-balancing routine included in the manager process,
to better utilize the available resources. While this parallel decomposition is not generally
scalable, the coarse granularity provides considerable efficiency considering the problems
of message latency and limited network bandwidth common to cluster computing

systems.

A system of nine SGI R3000 and R4000 workstations computed the flow over the wing
of the AV-8B Harder fighter aircraft using OVERFLOW-PVM on a grid system of over
0.5 million points. Grids of this size are typical for aircraft component performance
analyses. With this system, a sustained single-precision computation rate of 50.5 million
floating point operations per second (MFLOPS) has been achieved, representing more
than 40 percent of the combined maximum LINPACK MFLOPS rate (indicated in Table
3 above) of the machines used. Figure 2 suggests that larger problems with more grids

should achieve proportionately greater performance.

14 Bunning, P. G., and Chart, W. M., OVERFLOW/F3D User's Manual, NASA Ames Research Center, March 1991.

15Smith, M. H. and J. M. Pallis, MEDUSA- An Overset Grid Flow Solver for Network-based Parallel Computer

Systems, AIAA-93-3312,, July 1993.
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Figure 2 - Larger Scale Usage for Overflow-PVM

The same problem was run on two other cluster configurations; two HP 755s and a
combination of six SGI R4000s and three SGI R4400s. The solution times for these runs

were 1529 seconds and 1042 seconds respectively. Using the ',pixie" utility, the problem
is estimated to have 54.3 billion floating point operations, which yields effective MFLOP
rates off 35 MFLOPS for the two HPs and 52 MFLOPS for the 9 SGIs.

From a user's perspective, the greatest deficiency in the NAS DCF is the lack of
debugging and performance monitoring tools. At this time, performance statistics have
been generated using the UNIX time command. Top and the SGI tool gr_osvieware used
to determine the activities of the cluster. Gr_osview provides a graphical display of

system resources including, but not limited to, CPU and memory usage, and CPU wait
time. Gr osview is implemented using a client-server model, which allows for remote
monitoring of system performance. The graphical nature of gr_osview and the fact that
monitors for multiple machines may be displayed simultaneously, creates an easily
understood display of an application's operation on the cluster. Analogous tools designed
specifically for cluster computing are needed. Figure 3 shows a typical run of
OVERFLOW-PVM on three systems using grosview.
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Figure 3. Example of Performance Monitoring of OVERFLOW-PVM

Debugging in the cluster environment is significantly more difficult than on serial
machines. Not only must logical and typographical errors be found, but the timing of
operations can be essential to the proper functioning of a parallel code. Users currently
have the option of either using the dbx debugger on individual processes, or inserting
well-placed write statements to assess the status of an application's execution. In most
instances, the write statements have proven the most useful. Unfortunately, debugging in
this manner results in an enormous number of recompilations to remove a single bug. To
further confound debugging, a program that fails, due to a segmentation violation and
dumps core, often will not completely flush the output buffer, leaving an incomplete
record of the run.
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4.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks 16 were implemented on clusters of workstations using
PVM. The five kernels of NPB (EP, MG, CG, FT, IS) were implemented on three cluster
environments characterized as low-speed shared, medium-speed shared, and medium-
speed switched. These environments consisted of:

• A low-speed shared environment consisting of 16 Sun Sparcserver 1+
workstations connected by Ethernet at Emory University.

° A medium-speed shared environment consisting of seven IBM RS/6000 model
560 workstations and one RS/6000 model 320 workstation connected by FDDI at
Utah Supercomputing Institute.

° A medium-speed switched environment consisting of eight SGI R4000 computers
connected by DEC FDDI Gigaswitch at Sandia National Labs.

The implementation of these kernels on these environments was performed by Vaidy
Sunderam and his colleagues at Emory University under a grant from NAS Applied
Research Branch 17.The results for the CRI Y-MP, Intel iPSC/860, the NAS DCF, and
NASA Lewis cluster were obtained by one of us _8. Tables 4-8 show a summary of the
results obtained for the five NPB kernels (EP, MG, CG, FT and IS) on the clusters of
workstations using PVM:

Computer Problem Size Number of Network Time (sec) Ratio to

System Processors Y-MP/1
CRI Y-MP 2^28 1 126 1.00

Intel 128 26 4.91
iPSC/860

Sparcs 16 Ethernet 1603 0.08
8 FDDI 442 0.29RS/6000

model 560

(with one
RS/6000

model 320)
SGI R4000

NAS DCF
Gigaswitch

Ethernet
446
695

0.28
0.18

Table 4. NAS Parallel Benchmark Results for EP

16Davi d H. Bailey, Eric Barszcz, Leonardo Dagum and Horst Simon, NAS Parallel Benchmark Results 3-94, RNR

Technical Report, RNR-94-006, March 1994.

17White, S., Alund, A., and Sunderam, V., The NAS Parallel Benchmarks on Virtual Parallel Machines, NAS Report

RNR-93-xxx, under review.

18Work was done by Rod Fatoohi, NAS Applied Research Branch
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Computer Problem Number of Network Time (sec) Ratio to

System Size Processors Y-MP/I
CRI Y-MP 256A3 1 22 1.00

Intel 128 9 2.58
iPSC/860

Sparcs N/A
8 FDDI 110 0.20RS/6000

model 560

(with one
RS/6000

model 320)
SGI R4000 Gilgaswitch 168 0.13

SGI R3000 N/A

Table 5. NAS Parallel Benchmark Results for MG

Computer Problem Size Number of Network Time (sec) Ratio to
System Processors Y-MP/1

CRI Y-MP 2.0" 10A6 1 12 1.00

Intel 128 9 1.38

iPSC/860

Sparcs 16 Ethernet 605 0.02
4 FDDI 203 0.06RS/6000

model 560

(with one
RS/6000

model 320)

SGI R4000
SGI R3000 N/A

9 Gigaswitch 108

Table 6. NAS Parallel Benchmark Results for CG

0.11

Computer

System
CRI Y-MP

Intel

iPSC/860

Sparcs
RS/6000
model 560

(with one
RS/6000

model 320)
SGI R4000

SGI R3000

Problem Size

256^2x128

N/A

N/A

Number of
Processors

128

Network

FDDI

Gigaswitch

Time (sec)

29

(library
result)

10

(library
result)

412

228

Table 7. NAS Parallel Benchmark Results for FT

Ratio to
Y-MP/1

1.00

2.96

0.07

0.13
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Computer
System

CRI Y-MP

Problem Size Number of
Processors

Network Time (sec) Ratio to
Y-MP/1

2^23x2 ^ 19 1 11 1.00

Intel 128 14 0.84

iPSC/860

N/A
8 FDDI 318 0.04

Sparcs
RS/6000
model 560

(with one
RS/6000

model 320)
SGI R4000

SGI R3000 N/A
Gigaswitch 258 0.04

Table 8. NAS Parallel Benchmark Results for IS

The three simulated applications of NPB were implemented on the NAS cluster of SGI
workstations and on a cluster of IBM RS/6000-560 workstations at NASA Lewis
Research Center in Cleveland. The IBM cluster configuration has the ability to run jobs
on Ethernet, FDDI and the IBM Allnode switch 19.

The objective of this work is to evaluate the performance of representative algorithms
that involve significant amounts of communication on a loosely clustered set of
workstations. The three simulated applications (LU, SP, BT) are concerned with the

solution of a coupled system of PDEs on structured grids using time implicit relaxation
techniques. The LU benchmark employs an SSOR scheme resulting in the solution of
regular-sparse, block (5 x 5) lower and upper triangular systems. Both the BT and SP
benchmarks use variants of the three-factor, approximate factorization schemes similar to
the classical ADI method. In the SP benchmark this results in the solution of a sequence
of multiple, independent scalar pentadiagonal systems, each oriented along one of the
three mutually orthogonal directions of the computational space. The BT benchmark is a
close relative of the SP benchmark, with the primary difference being the solution of
block (5 x 5) tridiagonal systems, instead of scalar pentadiagonal systems. All
verification tests setup for the serial code should be passed, which is a very important
requirement in a NPB implementation 2°.

The simulated applications have been implemented on the Intel iPSC/860 using different
parallel algorithms. These algorithms have different communication requirements such as
communication pattern, number of messages and message sizes. The approach taken to
port these benchmarks to the NAS DCF was to develop a set of FORTRAN routines to
convert Intel iPSC/860 message-passing calls to PVM 2.4 and PVM 3.2 calls. This means
the same codes run on the iPSC/860, the NAS DCF and the Lewis cluster. Within the

NAS DCF, up to 16 SGI machines connected by Ethernet were used. Each of these
machines has at least a 33 megahertz (MHz) clock rate (refer to Table 3) and 32 MB of
local memory. On multiprocessor machines, only a single processor was employed.

The parallel LU implementation is based on the skew hyperplane mapping approach and
2-D partitioning into blocks 21. This implementation requires sending many short
messages to nearest neighbors. (On four processors, a total of 15400 messages with a

19Fatoohi, Rod and Sisira Weeratunga, Performance Evaluation of Three Distributed Computing Environments for
Scientific Applications, submitted to Supercomputer 94, April 1994.
20 The NAS Parallel Benchmarks, NAS Report RNR-91-002, 1991.

21Barszcz, E., Fatoohi, R., Venkatakrishnan, V., and Weeratunga, S., Solution of Regular, Sparse Triangular Linear
Systems on Vector and Distributed-Memory Multiprocessors, NAS Report RNR-93-007, 1993.
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total communication volume of about 2 MB was sent every time step.) The results of this

implementation in the environments (iPSC/860 and NAS DCF) using the standard
problem size (64 x 64 x 64) are given in Table 9 and Figure 4.

Computer Problem Size Number of Network Time (sec) Ratio to
System Processors Y-MP/I

Y-MP 64x64x64 1 333.5 1.00
Intel 64 690.8 0.48
iPSC/860
RS/6000 8 Allnode 2214.6 0.15
model 560
NAS DCF 8 Ethernet 11300 0.03
SGI R3000

Table 9. NAS Parallel Benchmark Results for LU

Figure 4 shows the implementation of LU in the NAS DCF and the iPSC/860 using
different numbers of processors. A speedup of about 2.5 was achieved on 4 and 16 SGI
processors, respectively, so it showed no improvement beyond four machines. The results
for 16 processors show that the iPSC/860 is about six times faster than the cluster. For the
DCT implementation of the three pseudo-applications, the same amount of work is given
to each processor, so the slowest processor in the group determines the overall speedup.

150
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o
o
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5O

1
0 I I I I | I I I

0 4 8 12 16 20 24 28 32

No. of Processors

Figure 4. LU Comparison for the NAS DCF and iPSC/860

Two parallel implementations of the SP benchmark were considered. A transpose-based
algorithm is employed using either one dimension or two dimension partitioning. This
implementation requires sending a few long messages. (On four processors using 1D

partitioning, a total of 64 messages with a total communication volume of about 32
megabytes was sent every time step.) The results are given in Table 10 and Figure 5. A
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speedup of about 2.2 was achieved using 16 SGI processors. The results for 16 processors
on the Intel iPSC/860 and the DCF show that the iPSC/860 is more than an order of

magnitude faster than the cluster.

Computer Problem Size Number of Network Time (sec) Ratio to
System Processors Y-MP/I

Y-MP 64x64x64 1 471.5 1.00
Intel 64 667.3 0.71
iPSC/860
RS/6000 8 FDDI 866.7 0.54

)model 560
!RS/6000 8 Allnode 1003.9 0.47
model 560
NAS DCF 8 Ethernet 6400.0 0.07

!SGI R3000

Table 10 - NAS Parallel Benchmark Results for SP

200

i 150

100

@

E
50

I I I I l I- -- "'I"" --_

0 4 8 1 2 1 6 20 24 28 32
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_ NASDCF

-- i_ -iPSC/860

Figure 5. SP Comparison for the NAS DCF and iPSC/860

Another parallel implementation of SP is based on the pipelined Gaussian elimination
algorithm using 1D, 2D, or 3D partitioning. This implementation requires sending many
short messages to nearest neighbors. (On four processors using 2D partitioning, a total of
46160 messages with a total communication volume of about 4 MB was sent every time
step.) The results of this implementation, not given here, show little speedup on the NAS
DCF.

Two parallel implementations of the BT benchmark were also completed. A transpose-
based algorithm, very similar to the SP implementation in communication requirements,
was employed. The results of this implementation are given in Table 11 and Figure 6. Not
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surprisingly since SP and BT are similar, these results are similar to the SP

implementation.

Computer
System

Y-MP
Intel
iPSC/860

Problem Size

_x_x64

Number of
Processors

64

Network Time (sec)

792.4
714.7

Ratio to
Y.MP/1

1.00
1.11

RS/6000 8 Allnode 1446 0.55
model 560
NAS DCF 8 Ethernet 14080 0.06
SGI R3000

Table 11. NAS Parallel Benchmark Results for BT
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No. of Processors

I _ NASDCF Ir - iPSC/860

Figure 6 - BT Comparison for the NAS DCF and iPSC/860

Another parallel implementation of BT is based on the sub structured Gaussian
elimination algorithm using 1D partitioning. This implementation requires sending few
long messages. (On four processors, a total of 58 messages with a total communication
volume of about 25 MB was sent every time step.) The algorithm used in BT suffers from

higher arithmetic overhead. The results of this implementation, not given here, show no

speedup on the NAS DCF.

The kernel EP was also implemented on the NAS cluster for comparison. This kernel has
almost no communication and therefore is an embarrassingly parallel algorithm). The
results are given in Table 12 and Figure 7. A speedup of 7.96 was achieved on eight SGI

processors. For this benchmark, the Intel iPSC/860 processor is about 50 percent faster
than the SGI processor.
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Computer Problem Size Number of Network Time (sec) Ratio to

System Processors Y-MP/I
Y-MP 2**28 1 126.2 1.00

Intel 64 51.4 2.46
iPSC/860

RS/6000 8 FDDI 137 0.18
model 560

SGI R3000 8 Ethernet 694.6 0.92

Table 12. NAS Parallel Benchmark Results for EP

6000

c
0

o 4000

2000

I I I I I I I I

NASDCF

r - iPSC/860

0 1 2 3 4 5 6 7 8

No. of Processors

Figure 7 - EP Comparison for the NAS DCF and iPSC/860

This study shows that Ethernet may not be sufficient for CFD codes based on grid
partitioning algorithms which preserve the implicitness of the numerical algorithm and
which run on more than a handful of processors. A comparison between Ethernet and the
iPSC/860 network shows that the latter out performs the former in the three main network
aspects: topology, bandwidth, and latency. Ethemet is a broadcast bus while the iPSC/860
network is a hypercube. The sustained bandwidth for the iPSC/860 network is about 2.5
MB/sec per link while it is about 0.5 MB/sec for Ethernet. Latency for the iPSC/860
network is about 150 microseconds while it is about 1 to 3 milliseconds for Ethernet.

A performance comparison between the NAS DCF and the current generation of

multiprocessor machines shows that the cluster lags in both the network and processor
speed. The SGI processor for many NAS cluster machines achieves between 1.3 and 4.8
MFLOPS for the four benchmarks while the processors for many multiprocessor

machines as well as current generation workstations can achieve performance an order of
magnitude faster than the NAS DCF machines. Also, multiprocessor machines have
faster and richer networks than Ethemet.
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The NAS DCF, composed of systems a generation behind the current workstations 22, lags
behind many dedicated clusters that have faster processors and networks. Many of these
clusters have switches that can achieve over 10 MB/sec transfer rates simultaneously over

multiple connections. Although some NAS machines are connected by FDDI, currently
this is limited to high-speed processors and general support machines. These results
indicate that it may not be useful to pursue NPB type problems on clusters similar to the
NAS DCF, particularly if they consist of older generation workstations. It remains
unknown how well these problems will do in clusters that incorporate the latest
generation of systems and networks.

Figure 8 shows a summary of the performance of each of the environments relative to a
single processor of a YMP. Figure 9 shows the same data, without the Intel and on a
different scale for a clearer picture of different cluster configurations. The environments
listed are:

1
2
3
4
5
6
7
8
9
10

Intel iPSC/860 - 128 Processors
Intel iPSC/860 - 64 Processors
YMP

Sparcs 1+ with Ethernet
RS/6000 - 560/320 with FDDI
RS/6000 - 560/Ethernet
RS/6000 - 560/,_llnode
SGI R4000 with Ethernet
SGI R3000 with Ethernet
NAS DCF

22NAS is in the process of selecting its next generation of workstation architectures(s) at this time.
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Cluster prices were calculated by getting the most complete configuration information
possible for the various clusters and using prices from several existing contracts available
to NAS to procure the same equipment. For equipment no longer on existing contracts or
sold by vendors, the last known price was used. In one case, where the amount of disk
was not included in the configuration, the amount shipped with a standard configuration
was used. Network infrastructure costs were not included, but special networking
hardware such as interface cards were. Also special network hardware such as the

Gigaswitch was included. The total cost was then prorated on a per processor basis, and
allocated by how many processors were used for the exact test. The NASA Lewis cluster
cost was provided by staff from NASA Lewis. Costs for non cluster systems are taken
from the most recent version of the NPB report. Readers are referred to this report for a

complete description of the performance and costs. The table is sorted by date of system
introduction.

Computer System Date Cost per Benchmarks
Processor

BT SP LU IS FT CG MG EP

IBMRS/6000modeI590-1 1994 $53Tl14 11.9 8.94 9.73 11.9 8.88 42.0 7.73 34.9
IBMSP-1/8 1994 $41,563 4.46 3.21 3.44 4.46 1.98 1.68 1.92 27.6

IBMSP-1/64 1994 $41,563 3.13 1.77 1.98 3.13 1.67 0.95 0.90 27.6
TMCCM-5E/32 1994 $31,250 5.43 2.79 2.19 5.43 3.89 1.06 5.70 11.0
TMCCM-5E/128 1994 $31,250 4.13 1.93 1.28 4.13 2.48 0.96 4.27 10.5
SGIR4000 1992 $14,074 1.12 0.87 1.17 2.51
LeRC LACE - IBM 560 1992 $46,875 1.45 0.26 0.35 1.23
LeRC LACE - IBM 560 1992 $46,875 1.46 1.25 0.40 1.46 0.26 0.35

PVM RS/6000/560 1992 $38r856 0.94
IBM RS/6000 model 560-4 1992 $38_856 0.94 0.78
IBM RS/6000 model 560-8 1992 $38,856 0.22 0.65 0.92
CRIC-90/1 1991 $1r915,625 1.16 1.33 1.10 1.80 1.46 1.75 1.42 8.23

CRIC-90/4 1991 $1,915,625 1.08 1.24 0.99 1.08 1.46 1.62 1.32 2.74
CRIC-90/16 1991 $1r915,625 0.91 1.18 0.62 0.91 1.03 1.14 0.76 2.57
Intel Paragon/64 1991 $27,422 1.05 0.52 1.92 1.80 1.66 1.51 6.88
IntelParagon/128 1991 $27,422 1.75 0.97 0.41 1.75 1.67 1.03 1.41 6.86
PVM RS/6000/550 1991 $25r000 0.59 0.76 1.42
Intel iPSC/860/128 1990 $14,609 1.02 0.56 0.40 1.02 1.59 0.91 1.38 2.63
Sparcs 1+ 1990 $9,097 0.52
PVM Sparcs 1990 $9r097 0.52
IBM RS/6000 model 320 1990 $8,616 0.55 11.8 2.76
CRIYMP/1 1988 $2r750r000 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36
CRIYMP/8 1988 $27750T000! 0.32 0.33 0.31 0.32 0.31 0.23 0.34 0.36
PVM SGI 4D/25 1988 $14,074 0.88
NAS DCF- SGI R3000 1988 $49,893 0.14 0.18 0.07 0.14 0.46

Table 9. Approximate Sustained Performance Per Dollar of Selected Systems

Several observations can be made from this data. First, some workstation clusters,

particularly the IBM 560 clusters, compared well to CRI C90 and Y-MPs. They also
compare well with MPP systems introduced in similar time periods. On the surface, some
clusters, particularly loosely clustered ones such as the NAS DCF, do not compare as
well with supercomputer or MPP systems. For the three pseudo-application NPBs (SP,
LU and BT), the NAS DCF average is .13 while the CRI Y-MP/1 is .36. However, all the
systems in the NAS DCF were acquired for an entirely different purpose than compute
capability - scientific visualization. The NAS DCF workstations do an excellent, cost
effective job for the primary function of visualization. Additionally, there are significant

idle cycles for these systems when their users are not active. The absolute performance
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comparison between loose clusters and supercomputers or MPPs must be adjusted to take
such considerations into account. It may be ",/iewed that the only cost to consider is
whatever equipment, software and support are needed to made such workstation usable
for compute intensive work.

Unfortunately, no results exist for clusters with processor technology introduced after
1992. The only workstation system with results is a single processor (non-networked)
IBM 590, that compares very favorably with every other system in the table. However,
with only a single processor result for one workstation introduced after 1992, one can not
conclude how cost effective workstations clusters of current generation systems are in
solving large problems that do not fit on a single system. The single system results are
encouraging, but clearly, workstation vendors must be encouraged to provide results for
clusters composed of the latest generation of workstations.

4.2.2 DCF Network Usage for the NPB

The NAS DCF network is essentially a collection of Ethernet subnets, concentrated on an
FDDI backbone. When a job runs in the DCF, all files are accessed via NFS so there is no
permanent use of disk resources when the primary user is working on a machine in the
cluster. (The DCT realizes there is a performance penalty for this.)

One of the major issues raised by the use of the DCF was the interaction of network
usage with the overall performance of the applications. Some work was done to
investigate these interactions, although as noted in some of the earlier sections, much
work remains to fully explore them. Specifically, improved ways to measure the
performance of a program relative to the activity on the network, both the activity
generated by the program and other activity on the network.

Running a number of small jobs across four machines on a single Ethernet subnet can
bring a single segment's utilization well past the 80 percent point. These jobs utilize the
entire effective bandwidth of an Ethemet, so that higher speed networks between the
machines could improve application performance. It is unclear, however, exactly how
much improvement would result. The DCT plans to investigate jobs running across FDDI
and ULTRAnet, comparing job run times with Ethernet.

Another experiment involved running a short three minute job which transferred about 32
MB of data between four machines. This is typical of some of the NPB codes reported
earlier. On a single Ethernet segment, the percent utilization increased from Under 20
percent to close to 100 percent. The job certainly dominated the subnet while it ran since
subnets with more than 40 percent experience significant collisions, causing slowdowns
on the network. Thus, it is expected such jobs would affect other work on systems on the
network segment for the duration of the time they execute.
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Figure 9. Example of Ethernet Utilization

Running the same test on four machines using an FDDI ring showed an increase in
percent utilization from under 8 percent to between 20 percent and 25 percent. As the
effective bandwidth of an FDDI ring is approximately 10 times that of an Ethemet, so the
bottleneck may have moved from the network to protocol processing.

These network experiments show that if programs with significant message-passing and
I/O requirement run on Ethemet-based systems, they are likely to impact other systems
on the subnet, even if the program is running on an idle workstation. Thus, running
DQS/PVM jobs during the day, even on idle systems can have a major impact on other
workers.

4.3 Porting Cray Codes to Workstations

Another area the DCT investigated was the difficulty and benefits of moving some
portion of work from the supercomputers to an environment similar to the DCF. This is
because a large number of problems currently running on the supercomputers may run
effectively on individual workstations. For examples, even on the NAS Cray systems,
configured specifically for large memory (greater than 2 gigabyte) problems, more than
50 percent of the CPU capacity is used by batch jobs less than 96 MB.
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Figure 10 - Distribution of Batch Jobs on the NAS C-90 by Memory Size

In order to investigate this, a suite of 32 standard-conforming FORTRAN 77 codes was

ported from the CRI C90 to SGI workstations. This section describes the problems
encountered and then remarks on potential problems with nonstandard conforming code
to illustrate of the issues involved in moving highly vectorized codes from Crays to
workstations. The major point of this exercise was to assess the possibility of moving
some portion of work from the supercomputers to an environment similar to the DCF. To
that end, these highly vectorized codes were compiled and run as single-threaded
executables on the workstations. These codes were not run in parallel.

The suite comprised a variety of codes, including kernels, pseudo-application codes, and

user application codes (such as Navier-Stokes and Euler solvers.) Slightly over half of the
codes in the suite were too big to run on any NAS workstation; however, all were

compiled locally to investigate their portability.

Most problems encountered in compiling these codes were related to inadequate software
support on workstations for high-precision floating point and integer arithmetic. About
one-third of the codes contained specific forms of the FORTRAN 77 intrinsic functions.
These codes failed to compile when the -r8 (64-bit floating point) compiler option was
invoked. These problems (usually REAL vs. DOUBLE PRECISION type mismatches)
were typically solved by replacing the specific forms with the generic intrinsics (e.g. MIN
for AMIN1, EXP for CEXP). AIMAG was the only specific intrinsic function without an

analogous generic function in these codes. It was changed to DIMAG, a nonstandard
DOUBLE PRECISION SGI intrinsic.

SGI3'77 provides no support for integers larger than 32 bits. Several codes relying on
such large integers produced incorrect output until this problem was diagnosed. The
problem was addressed by replacing the INTEGER calculations with REAL calculations.

Data alignment problems are related to the 64-bit integer problem. COMMON blocks
with 32-bit INTEGERs and 64-bit REALs may be misaligned due to FORTRAN storage
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association requirements. All codes with misaligned data ran successfully. However,
several of these codes failed to compile when -mips2 (R4000) optimization was invoked.
This was overcome by using the undocumented -align64 compiler option.

Finally, several codes failed to compile because f77 tried to put large arrays on the calling
stack. This problem was solved by invoking the -static option.

All of the codes used in this work so far were clean benchmark codes. Additional

problems occur in codes from the production workload. Such codes combine the Cray file
positioning commands GETPOS/SETPOS with BUFFER IN/BUFFER OUT statements.
This combination allows high-speed random access I/O. Workstation versions of these
codes must be modified to achieve random access I/O through the more restrictive
READ/WRITE commands on direct access files. Many codes rely on the CRI FORTRAN

compiler to initialize COMMON and set local variables to zero. In porting a code to a
workstation, users may need to investigate arcane compiler options that provide the same

effect, or preferably modify the code to initialize all data.

The NAS workstations provided reasonable performance, albeit much less than available
on a CRI Y-MP as shown in Table 13. The suite performance on the R4000 was better
with 64-bit floating point than with 32-bit floating point, due to the 64-bit hardware
support. This was true to a less extent on the R3000, and was not the case on the R2000.
There is considerably more variation in performance on a workstation than on a CRI Y-
MP. While some patterns were discernible (e.g. FFT kernels tended to be slower), we did
not find any correlation between application type and performance.

Vendor Processors

CRI Y-MP

SGI R4000 2.4 - 16.6

SGI R3000 1.8 - 5.7

SGI R2000 1.4 - 2.9

Performance

Range _IFLOPS)
100.0- 170.0

Table 13. Processor Performance Ranges on HSP Benchmarks Codes

Some of the slower codes might see performance gains if they were optimized to use the
cache more effectively. Such optimizations include padding arrays to reduce the number
of cache misses and reblocking array operations to fit into the cache.

The above study was performed on workstations acquired primarily for their good
graphics performance. Other vendors, such as Hewlett-Packard and IBM, offer
workstations with superior floating point performance on industry benchmarks such as
SPECfp92. Further, workstations with memory in excess of 512 MB (64 MW) are now
commercially available from several vendors. It is clearly feasible to assemble
workstation clusters capable of processing traditional large-memory, number-crunching
jobs in a productive and cost-effective manner.
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4.4 Summary of Other Users

Since February 1993, NAS staff primarily relied on the input from four users to assist
with the identification and resolution of major system management issues associated with
the cluster. In order to gain more experience in this type of computing environment it was
decided to expand the user base in mid-September 1993. An announcement was sent out
to the NAS scientific user community offering the prototypical (DCF) for limited use. In
October the number of DCF users grew to its current complement of 12. The additional
users were selected based on:

• willingness to do actual science applications in a rudimentary environment and to
provide feedback on their experiences working with that environment

• applications that ran on other massively parallel systems in order to draw
performance and service comparisons

• applications that required short runs or small memory on the CRI C-90 or Y-MPs
to evaluate the issues of off-loading these types of supercomputer jobs onto
workstations. It was not necessary for these to be parallel applications

• applications that ran on tightly clustered workstations in order to compare
performance and service with a loosely coupled environment

As mentioned above, the DCF offers two types of queuing systems (Condor and DQS) to
our small community of users. Jobs submitted to DQS are parallel programs using PVM
at night and jobs running under Condor are sequential programs utilizing idle cycles. As
the queuing systems form two groups for different programming methods, so DCF users
form into two groups. The following summarizes the experiences of these two groups of
users utilizing the DCF cluster at NAS.

4.4.1 DQS/PVM Users

Since the DCF was made available recently, most of the activity of this group has been
devoted to ramping up. Those users who are now ready to execute their programs have
primarily targeted their comments to administrative details with some observations about
using DQS. These comments and observations raise issues which need to be resolved in
order to make this batch system and the cluster easier to use and more efficient.

DQS runs at night with jobs being submitted during the day, prior to 101 Users look at the

results the next day. This method causes delays in development of PVM programs and in
actually executing the program. It places the burden on the users to discern whether a
problem is due to an error in their DQS command file or due to such things as a failure of
an individual workstation. Further prone to delays since tracking down such problems
occur sincejobs only run at night. This issue can been addressed by making a policy
change having additional DQS queues available during the day expressly for the purpose
of debugging. Off course, this can impact the primary workstation user since DQS does
not monitor all the workstations a job uses, just the workstation that controls the PVM
job.

To avoid disrupting a host workstation as much as possible, NFS was used for all file
accesses with job I/O routed through NFS to the DCF user's home workstation. This
approach limits DCF user's ability to exploit an application's potential for doing
embarrassingly parallel I/O, but insures the primary user of the workstation has all
resources available during the day. By requiring I/O to route to the user's home
workstation, a bottleneck was created whenever data was written out to solution and

checkpoint files or initial grids were read in. The possibility of making a change and

I)CT Report 28 April 29, 1994



giving users access to/tmp directories on individual workstations is being considered as
are other shared file system implementations.

DQS has been deficient in providing information to the user. The mail notification feature
does not work well. Failures due to the logistics of setting up a virtual machine, such as
the inability to add a host, are not reported. If a portion of the job aborts (other than the

host process), the job hangs and DQS takes no action.

The DQS queues are turned off at 5 am, and DQS suspends existing jobs on the
respective host machines, but daemons related to the suspended job are left running. As a
result, jobs will continue to use up workstation resources and could potentially interfere
with the processes of the primary users.

4.4.2 Condor Users

User experience with Condor has been limited. Originally, the Condor cluster consisted
of six SGIs making idle cycles available to two users. Currently, there is only one user.
Initial problems with checkpointing jobs on the SGIs, Condor's inability to adequately
detect interactivity, and not allowing the use of shell scripts have curtailed its anticipated

potential.

One new individual discovered a basic stumbling block that could not be surmounted.
While Condor has a command to identify an executable file for submission, normal
UNIX shell scripts containing executable commands cannot be submitted. Therefore, it
was not possible for this user to submit a multi-staged job using a complicated set of shell
scripts for program control without extensive modification to program code and multiple
manual submissions.

This same user also found that Condor was not as nonintrusive to the primary user of a
workstation as advertised, in that only shell keyboard activity caused a running job to go
dormant. Use of the mouse or interactive keyboard activity with a graphics or non-CPU
application program like FAST 23did not prevent Condor from attempting to swap jobs
back into the system. In addition, when a job is suspended, some of the system main
memory continues to be used, causing potential swapping problems for memory and/or
time intensive programs.

On the positive side, CPU intensive jobs that required several days to a week to complete
have run successfully. When these jobs ran uninterrupted, the remaining user found
Condor to be very useful. This user overcame the initial checkpoint problem by not
allowing Condor to restart jobs after being interrupted and manually resubmitting them.
In this way several hours or days of computation with an occasional job running to

completion were salvaged.

23pamela P. Walatka, Jean Clacas, R. Kevin McCabe, and Todd Plessle, FAST User Guide, NAS Technical Reprot,

RND-91-012, June 1992.

DCT Report 29 April 29, 1994



5.0 DCF Usage Analysis

During the time that the DCF environment was open to several users, the DCT
investigated usage for both the workstations and networks. This section reports some of
the findings. Only existing tools were used to record information. Accounting and usage
reporting clearly have to be improved as part of providing a more general-purpose
production environment.

5.1 Measuring System Usage

To provide usage information, Condor maintains a separate history log under the home
directory of the Condor account on each of the machines in the pool. A command,
condorsumrnary, is provided to combine and summarize those individual history files.
Unfortunately, the distributed nature of the history files has proven to be somewhat
difficult to work with. Careful attention must be paid to ensure the presence of the
accounting files on each system. Systems added to the pool, and later removed may still
contain valid accounting records. It is also not possible to summarize the usage records
until all systems are available and accessible. As the number of systems grows, formal
procedures to preserve accounting files will become necessary as the opportunities for
problems will increase.

DQS, unlike Condor, maintains usage information in a single file on its master system.
DQS provides a command, dqacct, to display or summarize usage information.

PVM does not provide any usage information. Instead, it relies on its hosts' underlying
accounting system to record process accounting data. Unfortunately, process accounting
data does not provide sufficient data to identify and group individual PVM processes,
possibly spread across multiple machines, into a single PVM job. The situation is further
complicated since PVM jobs can either be started interactively, or from within a DQS
job, so that PVM jobs can also be run on many machines not even considered part of the
DCF. Because of these problems, there was no attempt to record or report PVM usage
information for the prototype other than the fact it is a superset of the DQS statistics.

An example of the usage information is provided in Figure 11.
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Figure 11. Example of Weekly DCF Usage Graph

6.0 Summation of the DCF Experience

Useful work in computational aerosciences can be performed on the DCF as currently
configured. The total computational power and memory of the cluster is considerable.
Further, the aggregate compute capacity (based on LINPACK estimates) of all 320+ NAS
workstations (WKS-II technology) is 2.3 GFLOPS, which is approximately 30% of the
entire CRI C90. Optimistically, assuming the 40 percent efficiency achieved by
OVERFLOW-PVM can be achieved by other applications, assembling all the NAS
workstation resources yields 920 sustained MFLOPS. Since workstations are unused 75
percent of the time, one may conclude there are 700 MFLOPS available, which is
potentially equal to 1.8 CRI C90 processors. Small serial and coarse-grain parallel jobs
are well suited to this environment and will yeild closer to 100% efficiency when
running. Dozens of candidate jobs are run every day on the NAS CRI C90. •

The DCF can also serve to off-load a portion of the jobs currently running on the NAS
CRI C90. Small jobs (less than 96 MB of memory) make up a significant fraction of total
usage (approximately 50 percent). If NQS queue wait time is taken into account, very
reasonable throughput can be expected from the newer generation workstation

processors.

Although the DCF has shown the potential to off-load a portion of HSP jobs and to run
coarse-grain parallel jobs, it is not currently in position to replace the HSP or the MPP
systems. The maximum number of users on the system is limited by several factors. First,
the systems that make up the current DCF were originally selected for their graphics
capabilities and not their CPU power. As they are not specifically computational engines,
there is inadequate double precision hardware and compiler support, particularly in the
earlier generation machines (R2000, R3000). Finally, a large number of distributed
parallel jobs will quickly overwhelm Ethernet, affecting other local users.
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As stated earlier, the types of parallel jobs that may run efficiently on the loosely coupled
DCF is also limited. Programs written for MPP systems that require high bandwidth
and/or low latency will perform poorly or not at all. Programs that require parallel I/O
will be excluded.

The size of jobs transferred from the C90 to the DCF under Condor will be fairly limited,
as most machines comprising the DCF have less than 64 MB of memory. This memory
restriction will have a lesser impact on parallel jobs. There is also a profusion of older
generation processors which do not have the capacity for providing adequate throughput
for anything but the smallest serial jobs.

7.0 The Role of Cluster Computing in Industry

Economic pressures make cluster computing very attractive for the aerospace industry.
Tightly clustered systems give cost-effective computing for specific jobs. There are
several examples of successful, tightly coupled workstations in production at such
locations as NASA Lewis and Lawrence Livermore.

Loosely clustered systems have been successfully demonstrated at McDonnell Douglas,
where a system of over 150 HP workstations is in use 24. Recent results for an
aerodynamic simulation having 57 grids and 4.7 million grid points indicate that a cluster
of 15 mixed HP 715 and 735 systems on Ethernet can outperform (wall-clock time to
solution) a single dedicated CRI C90 CPU using McDonnell Douglas' production flow
solver. Their processor allocation scheme is simple, similar to the original one used in the
DCF, but five to six large jobs run every night in a non-production environment. This
system has provided computational resources to an aircraft program under very tight
budgetary and time constraints. As more users are added, McDonnell Douglas will need
more sophisticated scheduling software, but their success is extremely encouraging.

8.0 Expectations for Future Clustered Systems

Many limitations of the current DCF have either already been dealt with elsewhere in this
paper, or are well on their way to being overcome. At the same time, there are many areas
in which NAS can make a significant contribution to this style of computing. The keys to
an effective loosely-coupled cluster are described in the sections below.

8.1 Processor Speed

Workstation processor development is continuing at a dramatic pace, outstripping that of
conventional supercomputers and MPPs. The level of competition in this market segment
is significant. Near order-of-magnitude improvements in performance have been
common. While this improvement cannot continue indefinitely, the large volume of sales
in this market continue to bring in research and development funds. The relative
simplicity of a workstation, as compared to an MPP, allows vendors to bring their latest
technology to market in a workstation months or even years before it would appear in an
MPP.

By measures such as the NAS Parallel Benchmarks run on single processor workstations,
the current generation of workstation processors can provide a cost-effective

24Report of the NAS Workshop on Distributed Computing for Aeroscience Applications, October 18-20, 1993 and

separate discussions with McDonnell Douglas staff.
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computational platform to greatly reduce our reliance on the CRI C90 for smaller,
shorter-running jobs. For instance, IBM's new release, the RS6000 590 system, has
demonstrated at least 10 percent of the performance of a single C-90 processor on the
NAS Parallel Benchmarks at a small fraction of the cost. Newer machines are not nearly

as memory limited as older generations with capacities of 0.5 GB, and up to 4 GB is quite
common, in the offerings of most vendors. New fast SCSI devices have increased

significantly both the volume and the rate of disk I/O over previous generations of
workstations. Shared-memory parallel machines like the SGI Challenge series (up to 18
MIPS TFP processors) also offer great flexibility in both parallel and serial environments.
Like the current SPS machines, multiple processes may be run at once, or a serial job (or
a single element of a distributed parallel job) may be parallelized in the shared memory
environment by tools like SGI's PFA.

8.2 System Software

The high level of competition in the workstation market keeps single-system software
offerings from the vendors complete and of high quality. Unlike the MPP systems, the

compilers coming from the workstation vendors are relatively mature, and there are a
variety of utilities and software packages available. Regardless, moving supercomputer-
level applications into this environment requires improved compiler and language support
for reliability and performance. Bugs need to be resolved and language support for
distributed computing must be improved.

In the near future, we are likely to see many tools designed for clustered systems.
Program debugging, which is very difficult on distributed systems, must be a priority.
Performance analysis and process timing tools should follow. The Message-passing
Interface (MPI) has already been implemented by IBM on its SP-1 system, and other
vendors, both workstation and MPP, are expected to follow suit. This could make the
possibility of a seamless parallel environment a reality. Development continues on
communication products like PVM and P4, and a cluster-oriented version of High
Performance FORTRAN should be available soon.

Commitment to cluster computing varies among the primary hardware vendors. IBM is

supporting this style of computing with a number of tools and methods. HP has features
planned, some of which have been implemented, to support clusters. SGI, on the other
hand does not provide support for cluster computing, and Sun is relying mostly on public
domain tools. Many new system administration tools must be developed in order to
maintain and operate a large cluster in a production environment. NAS experience in
working with multiple vendors and in managing large numbers of workstations will be
invaluable in this development effort.

There is a significant need for a single integrated job-control system that supports parallel
and serial jobs and is integrated with PVM and other parallel language constructs. This
system must support job pre-emption for interactive use, adequate job checkpointing,
restart and suspension, shell scripting and adequate job limits. To minimize user
confusion, it should either incorporate the functionality of NQS, or should be entirely

separate with distinct commands.
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8.3 Application Software

Numerical algorithms specifically designed for distributed systems are in development
and are showing promise. In addition to the coarse-grain methods like OVERFLOW-
PVM, medium-grain matrix solvers have shown reasonable performance over a small
number of processors. Medium-grain methods can be used to increase the usable number
of processors in an otherwise coarse-grain parallel application.

Multi disciplinary and optimization problems contain an extra level of parallelism. Either
simulations of several slightly different configurations, or simulations of several physical
processes are required and may be run in parallel. Interest in this type of work is growing.
Some level of education will be required before potential cluster users can run efficiently.
The principles of vectorization on Cray machines are widely known in the aerospace
industry, but strategies for cache management, important on RISC-based machines, are
virtually unknown. The strengths and limitations of a distributed resource must be
investigated in order to make full use of their potential.

8.4 Distributed Parallel I/O

While some research into distributed parall.el I/O has been done, little if any has been
applied particularly to the cluster environment. Systems far beyond the current NFS-
based cross-mounting will be required for the efficient operation of some types of parallel
jobs. This may be an area in which NAS can make a significant contribution.

8.5 Networks

Most distributed computing work today is done on machines connected by Ethernet. User
processes running on different machines communicate with each other by means of a
high-level message-passing library (e.g. PVM, p4). The high level library, in turn, usually
relies on the vendor-supplied TCP/IP software to reach the network. Improved
communications performance can (and should) be obtained by improvements to all three
links in this chain. It is important to realize that any of these links may be a bottleneck. If
a system's weak point is the Ethernet, an upgrade to FDDI may expose the message-
passing library or network protocol as the new bottleneck.

8.6 Physical Connection/Protocol

Ethernet is the slowest commonly available network. The theoretical maximum
throughput is 10 megabits per second (Mb/sec). Typical Ethernets sustain 5 Mb/sec.
Several attractive alternatives are:

FDDI: This protocol runs over a fiber network. The theoretical maximum
bandwidth is 100 Mb/sec; sustained bandwidth of greater than 25 Mb/sec
may be expected in a good implementation.

HiPPi: This protocol uses parallelism to achieve a high data transmission rate.
The peak bandwidth is 800 Mb/sec; at least 320 Mb/sec can be sustained.

ATM: This is a cell-based protocol which is capable of attaining very high
bandwidth. It can provide a bandwidth of 45 Mb/sec today and has the
potential to upgrade to much higher speeds.
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Network bandwidth may also be increased by adding switches, such as the Digital
equipment Gigaswitch, or the IBM Allnode switch. Using such a switch, SCRI z_ has
measured user-level latency to be 30-215 microseconds (ms), as opposed to 2-5 ms when
using Ethernet.

8.7 Network Protocols

Protocols such as TCP/IP are used to communicate across the network. Most current

implementations of TCP/IP are slow. These protocol have difficulty effectively using the
bandwidth of high-speed networks, and introduce high latencies. Better message-passing
performance might be achieved by either improving the implementation of TCP/IP or by
relying on light-weight protocols which incur less overhead 26. A light-weight protocol
would, for example, need less fault tolerance than a general protocol such as TCP/IP.

8.8 Message-Passing Libraries

Message-passing libraries are used by the programmer to implement message passing in
scientific codes. They introduce additional overhead beyond that caused by the network
protocols. As with the protocols, more efficient implementations of existing libraries
(such as PVM) may improve performance. New libraries might be designed to reduce
overhead. It may be possible to gain performance by writing message-passing libraries
that combine the functionality of the current libraries and network protocols. Libraries
should also take advantage of shared memory for codes that use shared memory
multiprocessors.

9.0 Summary

Cluster computing is a legitimate and viable computing environment for compute-
intensive work. The computing power and affordable memory of the current generation
of workstations makes it possible to do many of the tasks currently running on the
supercomputers.

Economic pressures on the aerospace and other industries have generated a great deal of
interest in transferring computational load from traditional supercomputers to clusters of
existing workstations during when primary users are not active. Research shows that
coarse parallelism is quite common in aerosciences applications. To meet the industry's
needs, distributed computing research is starting in other organizations and will need
capabilities similar to the DCF to continue.

Scheduling and queuing software and procedures for parallel and cycle-recovery jobs is
now in its early stages. DQS and Condor are, for the most part, effective, but neither is
currently capable of performing all of the functions necessary for the trouble-free use of a
DCF. The DCT is currently in contact with both development groups, and work is
continuing on both systems, as well as others.

Unfortunately, not all primary users are immediately willing to allow their workstations
to participate in an open environment, particularly during prime-time. Tools that address
the issues of responsiveness to the primary users are basic and not supported by most
vendors. It must be demonstrated that the activities of the cluster will minimally impact

25ref. D. Duke in the NAS Workshop on Distributed Computing for Aeroscience Applications, October 18-20, 1993.

26CuUer, David, Thomas Anderson, and David Patterson, NOW: Design and Implementation of a Distributed

Supercomputer as a Cost Effective Extension to a Network of Workstations, University of Cailifomia at Berkeley

Project Proposal, October 1993.
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the regular use of the machine. Fears of loss of control and security must be abated
through education as well as software. Many users will object simply because they may
see no direct benefit in providing their workstation resources for others to use.

Using an existing base of workstations for compute intensive work will not demonstrate
being cost effective by most performance benchmarks, particularly if these systems are
loosely clustered using basic networking technology such as Ethernet. However, such
systems can provide valuable compute cycles for reasonably litre extra cost. Since
organizations have already invested in the existing base, the cost effectiveness tradeoff is
based on the added support costs and additional equipment costs, not on the original costs
of the systems.

The effectiveness of workstation cycle-recovery may be enhanced by the administrative
control of the environment. The effective administration of a distributed environment is

bound to be more complex than that of a centralized one. In tightly or loosely coupled
workstation clusters, knowledge about job mix and machine resources is essential. Cycle-
recovery will be maximized if a site carefully matches a job's resource requirements to
the available workstations-based on memory, processor speed, swap space, network
connectivity and available disk space.

In the final analysis this work has shown that workstation cluster computing is able to
efficiently solve major CFD problems. Continued work is needed to make such systems
reliable, efficient, and easier to use. Work is also needed to determine whether clusters

can effectively run the full range of algorithms involved with aeroscience problems.
Further work is needed to determine whether cluster computing is the best system
architecture for aeroscience applications.
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